Vidjil, a platform for the interactive analysis of immune repertoires

Aurélien Béliard, Marc Duez, Mathieu Giraud, Ryan Herbert, Tatiana Rocher, Mikaël Salson, Florian Thonier

Bonsai bioinformatics CRIStAL (Université Lille, CNRS), Inria, GBMHM/Inca Hôpital Rennes GBMHM/Inca

November 21, 2017 contact@vidjil.org

Vidjil Platform

High-throughput Repertoire Sequencing (RepSeq) analysis

- all the Vidjil components are open-source (GPL v3)
- code on http://www.vidjil.org/ and on GitHub
- continuous integration, > 2,000 unit and functional tests
 Duez et al., PLOS One, 2016

Vidjil analyzes recombinations on all human TR/Ig locus

V(D)J Designation

Comparison against IMGT V(D)J germline genes

... TGGGATGGGCCTATTATCAG...

V(D)J Designation Comparison against IMGT V(D)J germline genes

... TGGGATGGGCCTATTATCAG... V4 TGGGATGGG

V(D)J Designation Comparison against IMGT V(D)J germline genes

TGGGATGGGCCTATTATCAGV4TGGGATGGGV4TGGGATGGGV4TGGGATGGG

V(D)J Designation

Comparison against IMGT V(D)J germline genes, dynamic programming

TGGGATGGGCCTATTATCAG...V4TGGGATGGGV4TGGGATGGG

Immune Repertoire Sequencing (RepSeq)

Identification of all VDJ recombinations

$\begin{array}{cccccccc} 20\% & 50\% & 30\% \\ 1 \ 000 \ 000 \ VDJ = 100 \ 000 \ s \end{array}$

$\begin{array}{cccccccc} 20\% & 50\% & 30\% \\ 1 \ 000 \ 000 \ VDJ = 100 \ s \end{array}$

$\begin{array}{cccccccc} 20\% & 50\% & 30\% \\ 1 \ 000 \ 000 \ VDJ = 100 \ s \end{array}$

Fast identification of a window centered on the CDR3 Clone clustering

ACACGGCCGTGTATTACTGTGCGAGAGAGCTGAATACTTCCAGCACTGGGGCC

O(n) linear time

Clone clustering

parts of V genes

ACAC CACG ACGG CGGC GGCC GCCG TCTT CTTC TTCC TCCA CCAA CAAC AACC ACCT CCTT

CTTG TTGG TGGA ACTT ...

parts of J genes

ATAC TACT ACTT CCAG CAGC

- AGCA GCAC TGGG GGGC GGCA
- GCAA CAAG AAGA AGAG GAGT
- AGTT GTTG TTGG ...

ACACGGCCGTGTATTACTGTGCGAGAGAGCTGAATACTTCCAGCACTGGGGCC

O(n) linear time

Clone clustering

parts of V genes

ACAC CACG ACGG CGGC GGCC GCCG TCTT CTTC TTCC TCCA

- CCAA CAAC AACC ACCT CCTT
- CTTG TTGG TGGA ACTT

parts of J genes

- ATAC TACT ACTT CCAG CAGC
- AGCA GCAC TGGG GGGC GGCA
- GCAA CAAG AAGA AGAG GAGT
- AGTT GTTG TTGG ...

O(n) linear time

Clone clustering

parts of V genesACACCACGACGGCGCCATACGCCGTCTTCTTCTCCAAGCACCAACAACAACCACCTCCTTGCAACTTGTTGGTGGAACTT...AGTT

parts of J genes

ATAC TACT ACTT CCAG CAGC

- AGCA GCAC TGGG GGGC GGCA
- GCAA CAAG AAGA AGAG GAGT
- AGTT GTTG TTGG ...

Fenêtre de 50 nucléotides

ACACGGCCGTGTATTACTGTGCGAGAGAGCTGAATACTTCCAGCACTGGGGCC

O(n) linear time

Clone clustering

parts of V genes ACAC CACG ACGG CGGC GGCC GCCG TCTT CTTC TTCC TCCA CCAA CAAC AACC ACCT CCTT CTTG TTGG TGGA ACTT ... parts of J genes

ATAC TACT ACTT CCAG CAGC

- AGCA GCAC TGGG GGGC GGCA
- GCAA CAAG AAGA AGAG GAGT
- AGTT GTTG TTGG ...

Fenêtre de 50 nucléotides

ACACGGCCGTGTATTACTGTGCGAGAGAGCTGAATACTTCCAGCACTGGGGCC

O(n) linear time

$\begin{array}{cccccccc} 20\% & 50\% & 30\% \\ 1 \ 000 \ 000 \ VDJ = 100 \ s \end{array}$

Vidjil analyzes recombinations on all human TR/Ig locus

CTGTGCTACGTG TRGJ2*01

The search engine that tracks... your clones!

.

Indexing labelled sequences (current PhD)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 AGCTCATACGTCAGGAGG V1-03 D2 J4

Indexing labelled sequences (current PhD)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 AGCTCATACGTCAGGAGG V1-03 D2 J4

Indexing labelled sequences (current PhD)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 AGCTCATACGTCAGGAGG V1-03 D2 J4

Combined sequence/label queries

Vidjil Platform

High-throughput Repertoire Sequencing (RepSeq) analysis

- all the Vidjil components are open-source (GPL v3)
- code on http://www.vidjil.org/ and on GitHub
- continuous integration, > 2,000 unit and functional tests
 Duez et al., PLOS One, 2016